Convergence Theorems for Integral Polynomial Approximations

George D. Andria
Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213

Communicated by Oved Shisha
Received May 3, 1970

Introduction

Let $C(a, b)$ be the set of all real continuous functions on $[a, b]$ where $b-a<4$ (see $[6 ; 12$, note 4.4$]$), let $f \in C(a, b)$ be arbitrary but fixed, and let $\|f-Q\|$ denote a measure of deviation or error in approximating f by $Q \in Q(Z)$, the set of all polynomials with integral coefficients.

Definition 1. (a) f is approximable if and only if for each $\gamma>0$ there exists $Q_{\gamma} \in Q(Z)$ such that $\left|f(x)-Q_{\gamma}(x)\right|<\gamma$ for all $x \in[a, b]$.
(b) f is matchable on S if and only if $S \subseteq[a, b]$, and there exists $Q \in Q(Z)$ such that $Q(x)=f(x)$ for all $x \in S$.
(c) Let $U(a, b)=\{Q \mid Q \in Q(Z), 0 \leqslant Q(x)<1$ for all $x \in[a, b], Q \neq 0\}$. Then $U(a, b) \neq \varnothing$ (follows from [6, Theorem XIV]). Let $J(a, b)=$ $\{x \mid x \in[a, b], Q(x)=0$ for all $Q \in U(a, b)\}$. The points of $J(a, b)$ are called the critical points of $[a, b]$.

The problem of the approximability of f has a fairly long history (see $[3 ; 4 ; 6 ; 8 ; 12 ; 13 ; 15-17])$; for numerous results closely related to this problem see $[5 ; 7 ; 9 ; 10 ; 14]$. More recently, the questions of existence and uniqueness of best approximations have been studied (see [1;2;11]). Extensive use of some of these results will be made in this paper.

Our main result (Theorem 1) states that if f is not approximable, it can be modified by changing its definition on the finite set $J(a, b)$, so as to be pointwise approximable by polynomials $Q \in Q(Z)$.

We prove also some results concerning approximation by polynomials of $Q(Z)$ in nonChebyshev norms.

Convergence Theorems and Best Approximations

The first norm to be considered is the maximum (Chebyshev) norm

$$
\|f-Q\|_{\infty}=\max _{a \leqslant x \leqslant b}|f(x)-Q(x)|
$$

Theorem 1. Suppose fis not approximable, and set

$$
k_{0}=\inf _{Q \in Q(z)}\|f-Q\|
$$

then there exists a sequence $\left\{Q_{l}\right\}$ in $Q(Z)$ such that $Q_{l} \rightarrow F$ in $[a, b]$, where

$$
F(x)= \begin{cases}f(x) & \text { for } \\ T(x) & \text { for } \\ x \in J(a, b]-J(a, b) \\ \text { which is } \neq \phi \text { and finite }[12]) .\end{cases}
$$

Here $T \in Q(Z)$ and is of degree $<n$, and we have $\max _{J(a, b)}|f(x)-T(x)|=k_{0}$.
Proof. There exists $\gamma>0$ such that for each $Q \in Q(Z),|f(x)-Q(x)|>\gamma$ for some $x \in J(a, b) \neq \varnothing[2$, Theorem 7]. From Theorem 5 of [2] it follows that the supremum of the set of these γ 's is k_{0}.

Now let $\left\{\gamma_{j}\right\}$ be a real sequence such that $k_{0}<\gamma_{j} \rightarrow k_{0}$. Construct corresponding sequences $\left\{Q_{j}\right\}$ and $\left\{x_{j}\right\}$ such that $x_{j} \in J(a, b)$, and $\gamma_{j}>\left|f\left(x_{j}\right)-Q_{j}\left(x_{j}\right)\right| \geqslant\left|f(x)-Q_{j}(x)\right|$ for all $x \in J(a, b)$. Since $J(a, b)$ is finite, there exists a subsequence $\left\{j^{\prime}\right\}$ of $\{j\}$ such that $\left\{x_{j^{\prime}}\right\}$ is a constant sequence (denote it by $\left\{x^{*}\right\}$). Then $\gamma_{j^{\prime}}>\left|f\left(x_{j^{\prime}}\right)-Q_{j^{\prime}}\left(x_{j^{\prime}}\right)\right| \equiv\left|f\left(x^{*}\right)-Q_{j^{\prime}}\left(x^{*}\right)\right| \geqslant k_{0}$, and $\left|f\left(x^{*}\right)-Q_{i^{\prime}}\left(x^{*}\right)\right| \rightarrow k_{0}$. But this implies that there exists a subsequence $\left\{j^{\prime \prime}\right\}$ of $\left\{j^{\prime}\right\}$ such that $Q_{j^{\prime \prime}}\left(x^{*}\right) \rightarrow f\left(x^{*}\right) \pm k_{0}$, where \pm denotes an appropriate sign + or - (if both are possible, choose one arbitrarily).

Denote now by $x_{1}, x_{2}, \ldots, x_{n}\left(x_{1}<x_{2}<\cdots<x_{n}\right)$ the points of $J(a, b)$. Since $0 \leqslant\left|f(x)-Q_{j^{\prime}}(x)\right| \leqslant\left|f\left(x^{*}\right)-Q_{j^{\prime}}\left(x^{*}\right)\right|<\gamma_{j^{\prime}}$ for each $x \in J(a, b)$, and $\gamma_{j^{\prime}} \rightarrow k_{0}$, the sequence $\left\{j^{\prime \prime}\right\}$ has a subsequence $\left\{j_{1}{ }^{\prime}\right\}$ such that $\left\{\left|f\left(x_{1}\right)-Q_{j_{1}^{\prime}}\left(x_{1}\right)\right|\right\}$ converges to some $p_{1}, 0 \leqslant p_{1} \leqslant k_{0}$. Hence, there exists a subsequence $\left\{j_{1}^{\prime \prime}\right\}$ of $\left\{j_{1}^{\prime}\right\}$ such that $Q_{i_{1}}\left(x_{1}\right) \rightarrow f\left(x_{1}\right) \pm p_{1}$. Using the sequence $\left\{j_{1}^{\prime \prime}\right\}$, the argument of this paragraph with x_{1} replaced by x_{2} defines a sequence $\left\{j_{2}^{\prime \prime}\right\}$ such that $Q_{j_{2}^{\prime \prime}}\left(x_{i}\right) \rightarrow f\left(x_{i}\right) \pm p_{i}$ for $i=1,2$. Similarly for $i=3,4, \ldots, n$; finally we obtain $\left\{j_{n}^{\prime}\right\}$ such that $Q_{j_{n}^{\prime}}\left(x_{i}\right) \rightarrow f\left(x_{i}\right) \pm p_{i}$ for $i=1,2, \ldots, n$, where $0 \leqslant p_{i} \leqslant k_{0}$. Observe that for some $i, p_{i}=k_{0}$.

For simplicity, let $\{j\}$ denote the sequence $\left\{j_{n}^{\prime \prime}\right\}$. Let $T(x)$ denote the Lagrange interpolation polynomial of degree $<n$ satisfying $T\left(x_{i}\right)=f\left(x_{i}\right) \pm p_{i}$, $i=1,2, \ldots, n$. Then $Q_{j}\left(x_{i}\right) \rightarrow T\left(x_{i}\right)$ for each $x_{i} \in J(a, b)$; and [2, Theorem 5] for each j and each $\gamma>0$ there exists $Q_{j \nu} \in Q(Z)$ such that

$$
\left\|T(x)-Q_{j v}(x)\right\|_{\infty} \leqslant \max _{J(a, b)}\left|T(x)-Q_{j}(x)\right|+\gamma
$$

Therefore, as $\gamma \rightarrow 0,\left\|T(x)-Q_{j \gamma}(x)\right\|_{\infty} \rightarrow 0$. Hence, $T(x)$ is approximable on $[a, b]$, and, therefore, its coefficients are integral $[2$, remark following Theorem 3]. Observe that $\max _{J(a, b)}|f(x)-T(x)|=k_{0}$.

We establish now the existence of the sequence $\left\{Q_{i}\right\}$ of the theorem. Let m be a positive integer satisfying $2 / m<\max _{2 \leqslant i \leqslant n}\left(x_{i}-x_{i-1}\right)$. Then, for each integer $k \geqslant m$, define a new function $f_{k}(x)$ as follows: (1) $f_{k}\left(x_{i}\right)=f\left(x_{i}\right) \pm p_{i}$ for each x_{i}; (2) $f_{k}(x)=f(x)$ for $x \in E_{a} \cup E \cup E_{b}$ where $E_{a}=\left[a, x_{1}-(1 / k)\right]$, $E_{b}=\left[x_{n}+(1 / k), b\right]$, and $E=\bigcup_{i=2}^{n}\left[x_{i-1}+(1 / k), x_{i}-(1 / k)\right]$; and (3) $f_{k}(x)$ is linear on each of the $2 n$ open intervals of $[a, b]-E_{a}-E_{b}-E-J(a, b)$, so that $f_{k} \in C(a, b)$. Then f_{k} converges to F at each $x \in[a, b]$. Also, for each k, f_{k} is approximable on $[a, b]$ (as the coefficients of T are integral), so that for every $\gamma>0$ there exists $Q_{k, \gamma} \in Q(Z)$ such that $\left|f_{k}(x)-Q_{k, \gamma}(x)\right|<\gamma$ throughout $[a, b]$. For every $x \in[a, b]$, and, for $k=1,2, \ldots$, we have $Q_{k, 1 / k}(x)-F(x)=\left[Q_{k, 1 / k}(x)-f_{k}(x)\right]+\left[f_{k}(x)-F(x)\right] \rightarrow 0$ as $k \rightarrow \infty$. Hence, $\lim _{k \rightarrow \infty} Q_{k, 1 / k}(x)=F(x)$ for every $x \in[a, b]$. (We have assumed $n \geqslant 2$ and $a<x_{1}<x_{n}<b$, but similar constructions can be made in the other cases).

Definition 2. If f is approximable, let $F(x) \equiv f(x)$. If f is not approximable, let F be as in Theorem 1. For each $f \in C(a, b)$, we call F an apparent best approximation to f.

Note that, in general, F is not the restriction to $[a, b]$ of a $Q \in Q(Z)$, and, in fact, $F \in C(a, b)$ only if f is approximable. In addition, there may be more than one apparent best approximation to f if f is not approximable. For example, $f(x) \equiv \frac{1}{2}$ on $\left[-\frac{1}{2}, \frac{1}{2}\right]$ has $f_{1}(x)=\frac{1}{2}$ for $x \neq 0, f_{1}(0)=1$, and $f_{2}(x)=\frac{1}{2}$ for $x \neq 0, f_{2}(0)=0$ as apparent best approximations.

The significance of Theorem 1 is that, regardless of the questions of the existence of best approximations to f and the approximability of f, a convergence property holds in the following sense.

Corollary 1. There always exists in $Q(Z)$ a sequence $\left\{Q_{n}\right\}$ converging tof in $[a, b]-J(a, b)$.
With the previous theorem, the proofs of convergence theorems for other norms are greatly simplified.

Definition 3. For $p \geqslant 1$ and $g \in C(a, b)$, we set

$$
\|g\|_{p}=\left[\int_{a}^{b}|g(x)|^{p} d x\right]^{1 / p}
$$

Theorem 2. There exists in $Q(Z)$ a sequence $\left\{Q_{n}\right\}$ such that $Q_{n}(x) \rightarrow f(x)$ in the sense that $\left\|f-Q_{n}\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$, for every $p, 1 \leqslant p<\infty$.
Proof. (i) If f is approximable, then for $n=1,2, \ldots$, there exists
$Q_{n} \in Q(Z)$ such that $\left|f(x)-Q_{n}(x)\right|<1 / n$ for all $x \in[a, b]$. Thus, $\left\|f-Q_{n}\right\|_{p} \leqslant 4 / n$ for $1 \leqslant p<\infty$.
(ii) If f is not approximable, then by the proof of Theorem 1, for every $p \geqslant 1,\left|Q_{k, 1 / k}(x)-F(x)\right|^{p} \rightarrow 0$ and, hence, $\left\|F-Q_{k, 1 / k}\right\|_{p} \rightarrow 0$. Since $F=f$ almost everywhere in $[a, b]$, we have $\left\|f-Q_{k, 1 / k}\right\|_{p} \rightarrow 0$.

Theorem 2 tells us that there exist in $Q(Z)$ arbitrarily good approximations to f with respect to the L_{p} norms. Furthermore, the existence of a best approximation Q to f relative to such a norm would imply that $\|f-Q\|_{p}=0$, and since $f, Q \in C(a, b)$, this would imply $f=Q$ on $[a, b]$.

Corollary 2. There exists in $Q(Z)$ a best approximation to frelative to an L_{p} norm if and only if $f \in Q(Z)$.

We study now the implications of Theorem 1 for a "discrete" norm.
Definition 3. Let $p \geqslant 1$, and let $W=\left\{w_{0}, w_{1}, \ldots, w_{l}\right\}$ be a fixed set of distinct points in $[a, b]$. We set, for $Q \in Q(Z)$,

$$
D_{p}(f, Q)=\left(\sum_{i=0}^{l}\left|f\left(w_{i}\right)-Q\left(w_{i}\right)\right|^{p}\right)^{1 / p}, \quad \text { and } \quad C_{w}=J(a, b) \cap W
$$

By Theorem 1, every point w_{i} of W for which $\left|f\left(w_{i}\right)-Q\left(w_{i}\right)\right|$ cannot be made arbitrarily small by a judicious choice of Q must be in C_{w}.

Theorem 3. If either (a) $C_{w}=\varnothing$, or (b) $C_{w} \neq \varnothing$ and f is matchable on C_{w}, then there exist in $Q(Z)$ arbitrarily good approximations to f with respect to D_{p}.

Proof. (a) Suppose $C_{w}=\varnothing$. Then for each $i, w_{i} \in[a, b]-J(a, b)$. By Corollary 1 , there exists in $Q(Z)$ a sequence $\left\{Q_{n}\right\}$ such that, for every i, $Q_{n}\left(w_{i}\right) \rightarrow f\left(w_{i}\right)$. Therefore,

$$
D_{p}\left(f, Q_{n}\right)=\left(\sum_{i=0}^{l}\left|f\left(w_{i}\right)-Q_{n}\left(w_{i}\right)\right|^{p}\right)^{1 / p} \rightarrow 0
$$

(b) If $C_{w} \neq \varnothing$, and f is matchable on C_{w}, then there exists $\bar{Q} \in Q(Z)$ such that $\bar{Q}(x)=f(x)$ for all $x \in C_{w}$. Let m be as in the proof of Theorem 1; we again set $J(a, b)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ where $x_{1}<x_{2}<\cdots<x_{n}$, and again assume $n \geqslant 2, a<x_{1}<x_{n}<b$. Similar arguments hold in the other cases. For each integer $k \geqslant m$, let $f_{k}(x)$ be
$\bar{Q}(x) \quad$ for $\quad x \in J(a, b)$,
$f(x) \quad$ for $\quad x \in\left[x_{i-1}+(1 / k), x_{i}-(1 / k)\right], \quad i=2,3, \ldots, n$,
$f(x) \quad$ for $\quad x \in\left[a, x_{1}-(1 / k)\right] \cup\left[x_{n}+(1 / k), b\right]$,
linear on each of the remaining open subintervals of $[a, b]$.

Thus, each f_{k} is continuous in $[a, b]$, and, since it is matchable on $J(a, b)$, it is approximable on $[a, b][12$, Theorems 2.6 and 4.3]. For every $k \geqslant m, j \geqslant 1$, let $Q_{j, k} \in Q(Z)$ satisfy $\max _{a \leqslant x \leqslant b}\left|f_{k}(x)-Q_{j, k}(x)\right|<1 / j$. Since

$$
f_{k}(x) \rightarrow \begin{cases}\bar{Q}(x) & \text { for } \quad x \in J(a, b) \\ f(x) & \text { for } \quad x \in[a, b]-J(a, b)\end{cases}
$$

we have

$$
Q_{k, k}(x) \rightarrow\left\{\begin{array}{lll}
\bar{Q}(x) & \text { for } & x \in J(a, b) \\
f(x) & \text { for } & x \in[a, b]-J(a, b)
\end{array}\right.
$$

In particular, it follows that $Q_{k, k}\left(w_{i}\right) \rightarrow f\left(w_{i}\right)$ for each i. Hence,

$$
D_{p}\left(f, Q_{k, k}\right)=\left(\sum_{i=0}^{l}\left|f\left(w_{i}\right)-Q_{k, k}\left(w_{i}\right)\right|^{p}\right)^{1 / p} \rightarrow 0, \quad \text { Q.E.D. }
$$

References

1. G. Andria, On integral polynomial approximation, Ph.D. Thesis, St. Louis University, 1968.
2. G. Andria, Approximation of continuous functions by polynomials with integral coefficients, J. Approximation Theory 4 (1971), 357-362.
3. S. N. Bernšteín, Sobranie Socinenií I, Izdatel'stvo Akad. Nauk SSSR (1952), 468-471, 517-519.
4. M. Fekete, Approximations par polynomes avec conditions diophantiennes, C. R. Acad. Sci. Paris 239 (1954), 1337-1339, 1455-1457; published in greater detail in Hebrew: Riveon Lematematika 9 (1955), 1-12, with an English summary).
5. M. Fekete, Úber den transfiniten Durchmesser ebener Punktmengen, Math. Z. 32 (1930), 108-114, 215-221; 37 (1933), 635-646.
6. M. Fekete, Ưber die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), 228-249.
7. M. Fekete, Über die Wertverteilung bei ganzzahligen Polynomen, Math. Z. 31 (1930), 521-526.
8. L. B. O. Ferguson, Uniform approximation by polynomials with integral coefficients, Pacific J. Math. 27 (1968), 53-69; 26 (1968), 273-281.
9. L. B. O. Ferguson, Uniform approximation of rational functions by polynomials with integral coefficients, Duke Math. J. 36 (1969), 673-675.
10. L. B. O. Ferguson, Algebraic kernels of planar sets, Duke Math. J. 37 (1970), 225-230.
11. L. B. O. Ferguson, Existence and uniqueness in approximation by integral coefficients, J. Approximation Theory, to appear.
12. E. Hewitt and H. S. Zuckerman, "Approximation by polynomials with integral coefficients, a reformulation of the Stone-Weierstrass theorem, Duke Math. J. 26 (1959), 305-324.
13. S. Kakeya, On approximate polynomials, Tôhoku Math. J. 6 (1914-1915), 182-186.
14. L. V. Kantorovic, Neskol'ko zamečaniĭ o približenii k funkciyam posredstrom polinomov c celymi koefficientami, Izv. Akad. Nauk SSSR (Otdel. mat. i est. Nauk) (1931), 1163-1168.
15. Y. Okada, On approximate polynomials with integral coefficients only, Tôhoku Math. J. 23 (1923), 26-35.
16. J. PÅL, Zwei kleine Bemerkungen, Tôhoku Math. J. 6 (1914-1915), 42-43.
17. I. YaMAMOTO, A remark on approximate polynomials, and Eine Bemerkung über algebraische Gleichungen, Tôhoku Math. J. 33 (1931), 21-25.
