Convergence Theorems for Integral Polynomial Approximations

GEORGE D. ANDRIA

Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 Communicated by Oved Shisha

Received May 3, 1970

INTRODUCTION

Let C(a, b) be the set of all real continuous functions on [a, b] where b - a < 4 (see [6; 12, note 4.4]), let $f \in C(a, b)$ be arbitrary but fixed, and let ||f - Q|| denote a measure of deviation or error in approximating f by $Q \in Q(Z)$, the set of all polynomials with integral coefficients.

DEFINITION 1. (a) f is approximable if and only if for each $\gamma > 0$ there exists $Q_{\gamma} \in Q(Z)$ such that $|f(x) - Q_{\gamma}(x)| < \gamma$ for all $x \in [a, b]$.

(b) f is matchable on S if and only if $S \subseteq [a, b]$, and there exists $Q \in Q(Z)$ such that Q(x) = f(x) for all $x \in S$.

(c) Let $U(a, b) = \{Q \mid Q \in Q(Z), 0 \leq Q(x) < 1 \text{ for all } x \in [a, b], Q \neq 0\}$. Then $U(a, b) \neq \emptyset$ (follows from [6, Theorem XIV]). Let $J(a, b) = \{x \mid x \in [a, b], Q(x) = 0 \text{ for all } Q \in U(a, b)\}$. The points of J(a, b) are called the critical points of [a, b].

The problem of the approximability of f has a fairly long history (see [3; 4; 6; 8; 12; 13; 15–17]); for numerous results closely related to this problem see [5; 7; 9; 10; 14]. More recently, the questions of existence and uniqueness of best approximations have been studied (see [1; 2; 11]). Extensive use of some of these results will be made in this paper.

Our main result (Theorem 1) states that if f is not approximable, it can be modified by changing its definition on the finite set J(a, b), so as to be pointwise approximable by polynomials $Q \in Q(Z)$.

We prove also some results concerning approximation by polynomials of Q(Z) in nonChebyshev norms.

ANDRIA

CONVERGENCE THEOREMS AND BEST APPROXIMATIONS

The first norm to be considered is the maximum (Chebyshev) norm

$$||f - Q||_{\infty} = \max_{a \le x \le b} |f(x) - Q(x)|.$$

THEOREM 1. Suppose f is not approximable, and set

$$k_0 = \inf_{Q \in Q(Z)} \|f - Q\|;$$

then there exists a sequence $\{Q_i\}$ in Q(Z) such that $Q_i \rightarrow F$ in [a, b], where

$$F(x) = \begin{cases} f(x) & \text{for } x \in [a, b] - J(a, b), \\ T(x) & \text{for } x \in J(a, b) \text{ (which is } \neq \phi \text{ and finite [12])}. \end{cases}$$

Here $T \in Q(Z)$ and is of degree $\langle n, and we have \max_{J(a,b)} | f(x) - T(x) | = k_0$.

Proof. There exists $\gamma > 0$ such that for each $Q \in Q(Z)$, $|f(x) - Q(x)| > \gamma$ for some $x \in J(a, b) \neq \emptyset$ [2, Theorem 7]. From Theorem 5 of [2] it follows that the supremum of the set of these γ 's is k_0 .

Now let $\{\gamma_j\}$ be a real sequence such that $k_0 < \gamma_j \rightarrow k_0$. Construct corresponding sequences $\{Q_j\}$ and $\{x_j\}$ such that $x_j \in J(a, b)$, and $\gamma_j > |f(x_j) - Q_j(x_j)| \ge |f(x) - Q_j(x)|$ for all $x \in J(a, b)$. Since J(a, b) is finite, there exists a subsequence $\{j'\}$ of $\{j\}$ such that $\{x_{j'}\}$ is a constant sequence (denote it by $\{x^*\}$). Then $\gamma_{j'} > |f(x_{j'}) - Q_{j'}(x_{j'})| \equiv |f(x^*) - Q_{j'}(x^*)| \ge k_0$, and $|f(x^*) - Q_{j'}(x^*)| \rightarrow k_0$. But this implies that there exists a subsequence $\{j''\}$ of $\{j'\}$ such that $Q_{j''}(x^*) \rightarrow f(x^*) \pm k_0$, where \pm denotes an appropriate sign + or - (if both are possible, choose one arbitrarily).

Denote now by $x_1, x_2, ..., x_n$ $(x_1 < x_2 < \cdots < x_n)$ the points of J(a, b). Since $0 \leq |f(x) - Q_{j'}(x)| \leq |f(x^*) - Q_{j'}(x^*)| < \gamma_{j'}$ for each $x \in J(a, b)$, and $\gamma_{j'} \rightarrow k_0$, the sequence $\{j''\}$ has a subsequence $\{j_1'\}$ such that $\{|f(x_1) - Q_{j'_1}(x_1)|\}$ converges to some $p_1, 0 \leq p_1 \leq k_0$. Hence, there exists a subsequence $\{j''_1\}$ of $\{j_1'\}$ such that $Q_{j'_1}(x_1) \rightarrow f(x_1) \pm p_1$. Using the sequence $\{j''_1\}$, the argument of this paragraph with x_1 replaced by x_2 defines a sequence $\{j''_2\}$ such that $Q_{j''_2}(x_i) \rightarrow f(x_i) \pm p_i$ for i = 1, 2. Similarly for i = 3, 4, ..., n; finally we obtain $\{j''_n\}$ such that $Q_{j''_n}(x_i) \rightarrow f(x_i) \pm p_i$ for i = 1, 2, ..., n, where $0 \leq p_i \leq k_0$.

For simplicity, let $\{j\}$ denote the sequence $\{j''_n\}$. Let T(x) denote the Lagrange interpolation polynomial of degree $\langle n \rangle$ satisfying $T(x_i) = f(x_i) \pm p_i$, i = 1, 2, ..., n. Then $Q_j(x_i) \to T(x_i)$ for each $x_i \in J(a, b)$; and [2, Theorem 5] for each j and each $\gamma > 0$ there exists $Q_{j\gamma} \in Q(Z)$ such that

$$|| T(x) - Q_{j\gamma}(x) ||_{\infty} \leq \max_{J(a,b)} |T(x) - Q_{j}(x)| + \gamma.$$

Therefore, as $\gamma \to 0$, $||T(x) - Q_{j\gamma}(x)||_{\infty} \to 0$. Hence, T(x) is approximable on [a, b], and, therefore, its coefficients are integral [2, remark following Theorem 3]. Observe that $\max_{J(a,b)} |f(x) - T(x)| = k_0$.

We establish now the existence of the sequence $\{Q_i\}$ of the theorem. Let m be a positive integer satisfying $2/m < \max_{2 \le i \le n} (x_i - x_{i-1})$. Then, for each integer $k \ge m$, define a new function $f_k(x)$ as follows: (1) $f_k(x_i) = f(x_i) \pm p_i$ for each x_i ; (2) $f_k(x) = f(x)$ for $x \in E_a \cup E \cup E_b$ where $E_a = [a, x_1 - (1/k)]$, $E_b = [x_n + (1/k), b]$, and $E = \bigcup_{i=2}^n [x_{i-1} + (1/k), x_i - (1/k)]$; and (3) $f_k(x)$ is linear on each of the 2n open intervals of $[a, b] - E_a - E_b - E - J(a, b)$, so that $f_k \in C(a, b)$. Then f_k converges to F at each $x \in [a, b]$. Also, for each k, f_k is approximable on [a, b] (as the coefficients of T are integral), so that for every $\gamma > 0$ there exists $Q_{k,\gamma} \in Q(Z)$ such that $|f_k(x) - Q_{k,\gamma}(x)| < \gamma$ throughout [a, b]. For every $x \in [a, b]$, and, for k = 1, 2, ..., we have $Q_{k,1/k}(x) - F(x) = [Q_{k,1/k}(x) - f_k(x)] + [f_k(x) - F(x)] \to 0$ as $k \to \infty$. Hence, $\lim_{k \to \infty} Q_{k,1/k}(x) = F(x)$ for every $x \in [a, b]$. (We have assumed $n \ge 2$ and $a < x_1 < x_n < b$, but similar constructions can be made in the other cases).

DEFINITION 2. If f is approximable, let $F(x) \equiv f(x)$. If f is not approximable, let F be as in Theorem 1. For each $f \in C(a, b)$, we call F an apparent best approximation to f.

Note that, in general, F is not the restriction to [a, b] of a $Q \in Q(Z)$, and, in fact, $F \in C(a, b)$ only if f is approximable. In addition, there may be more than one apparent best approximation to f if f is not approximable. For example, $f(x) \equiv \frac{1}{2}$ on $[-\frac{1}{2}, \frac{1}{2}]$ has $f_1(x) = \frac{1}{2}$ for $x \neq 0$, $f_1(0) = 1$, and $f_2(x) = \frac{1}{2}$ for $x \neq 0$, $f_2(0) = 0$ as apparent best approximations.

The significance of Theorem 1 is that, regardless of the questions of the existence of best approximations to f and the approximability of f, a convergence property holds in the following sense.

COROLLARY 1. There always exists in Q(Z) a sequence $\{Q_n\}$ converging to f in [a, b] - J(a, b).

With the previous theorem, the proofs of convergence theorems for other norms are greatly simplified.

DEFINITION 3. For $p \ge 1$ and $g \in C(a, b)$, we set

$$||g||_p = \left[\int_a^b |g(x)|^p dx\right]^{1/p}.$$

THEOREM 2. There exists in Q(Z) a sequence $\{Q_n\}$ such that $Q_n(x) \to f(x)$ in the sense that $||f - Q_n||_p \to 0$ as $n \to \infty$, for every $p, 1 \le p < \infty$.

Proof. (i) If f is approximable, then for n = 1, 2, ..., there exists

ANDRIA

 $Q_n \in Q(Z)$ such that $|f(x) - Q_n(x)| < 1/n$ for all $x \in [a, b]$. Thus, $||f - Q_n||_p \leq 4/n$ for $1 \leq p < \infty$.

(ii) If f is not approximable, then by the proof of Theorem 1, for every $p \ge 1$, $|Q_{k,1/k}(x) - F(x)|^p \to 0$ and, hence, $||F - Q_{k,1/k}||_p \to 0$. Since F = f almost everywhere in [a, b], we have $||f - Q_{k,1/k}||_p \to 0$.

Theorem 2 tells us that there exist in Q(Z) arbitrarily good approximations to f with respect to the L_p norms. Furthermore, the existence of a best approximation Q to f relative to such a norm would imply that $||f - Q||_p = 0$, and since f, $Q \in C(a, b)$, this would imply f = Q on [a, b].

COROLLARY 2. There exists in Q(Z) a best approximation to f relative to an L_p norm if and only if $f \in Q(Z)$.

We study now the implications of Theorem 1 for a "discrete" norm.

DEFINITION 3. Let $p \ge 1$, and let $W = \{w_0, w_1, ..., w_l\}$ be a fixed set of distinct points in [a, b]. We set, for $Q \in Q(Z)$,

$$D_p(f, Q) = \left(\sum_{i=0}^l |f(w_i) - Q(w_i)|^p\right)^{1/p}$$
, and $C_w = J(a, b) \cap W$.

By Theorem 1, every point w_i of W for which $|f(w_i) - Q(w_i)|$ cannot be made arbitrarily small by a judicious choice of Q must be in C_w .

THEOREM 3. If either (a) $C_w = \emptyset$, or (b) $C_w \neq \emptyset$ and f is matchable on C_w , then there exist in Q(Z) arbitrarily good approximations to f with respect to D_p .

Proof. (a) Suppose $C_w = \emptyset$. Then for each *i*, $w_i \in [a, b] - J(a, b)$. By Corollary 1, there exists in Q(Z) a sequence $\{Q_n\}$ such that, for every *i*, $Q_n(w_i) \rightarrow f(w_i)$. Therefore,

$$D_p(f, Q_n) = \left(\sum_{i=0}^l |f(w_i) - Q_n(w_i)|^p\right)^{1/p} \to 0.$$

(b) If $C_w \neq \emptyset$, and f is matchable on C_w , then there exists $\overline{Q} \in Q(Z)$ such that $\overline{Q}(x) = f(x)$ for all $x \in C_w$. Let m be as in the proof of Theorem 1; we again set $J(a, b) = \{x_1, x_2, ..., x_n\}$ where $x_1 < x_2 < \cdots < x_n$, and again assume $n \ge 2$, $a < x_1 < x_n < b$. Similar arguments hold in the other cases. For each integer $k \ge m$, let $f_k(x)$ be

 $\overline{Q}(x) \quad \text{for} \quad x \in J(a, b), \\ f(x) \quad \text{for} \quad x \in [x_{i-1} + (1/k), x_i - (1/k)], \quad i = 2, 3, ..., n, \\ f(x) \quad \text{for} \quad x \in [a, x_1 - (1/k)] \cup [x_n + (1/k), b],$

linear on each of the remaining open subintervals of [a, b].

Thus, each f_k is continuous in [a, b], and, since it is matchable on J(a, b), it is approximable on [a, b] [12, Theorems 2.6 and 4.3]. For every $k \ge m$, $j \ge 1$, let $Q_{j,k} \in Q(Z)$ satisfy $\max_{a \le x \le b} |f_k(x) - Q_{j,k}(x)| < 1/j$. Since

$$f_k(x) \to \begin{cases} \overline{Q}(x) & \text{for } x \in J(a, b), \\ f(x) & \text{for } x \in [a, b] - J(a, b), \end{cases}$$

we have

$$Q_{k,k}(x) \to \begin{cases} \overline{Q}(x) & \text{for } x \in J(a, b), \\ f(x) & \text{for } x \in [a, b] - J(a, b). \end{cases}$$

In particular, it follows that $Q_{k,k}(w_i) \rightarrow f(w_i)$ for each *i*. Hence,

$$D_p(f, Q_{k,k}) = \left(\sum_{i=0}^l |f(w_i) - Q_{k,k}(w_i)|^p\right)^{1/p} \to 0, \qquad \text{Q.E.D.}$$

References

- 1. G. ANDRIA, On integral polynomial approximation, Ph.D. Thesis, St. Louis University, 1968.
- 2. G. ANDRIA, Approximation of continuous functions by polynomials with integral coefficients, J. Approximation Theory 4 (1971), 357-362.
- S. N. BERNŠTEIN, Sobranie Socinenii I, Izdatel'stvo Akad. Nauk SSSR (1952), 468–471, 517–519.
- M. FEKETE, Approximations par polynomes avec conditions diophantiennes, C. R. Acad. Sci. Paris 239 (1954), 1337-1339, 1455-1457; published in greater detail in Hebrew: Riveon Lematematika 9 (1955), 1-12, with an English summary).
- 5. M. FEKETE, Über den transfiniten Durchmesser ebener Punktmengen, Math. Z. 32 (1930), 108-114, 215-221; 37 (1933), 635-646.
- M. FEKETE, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), 228–249.
- M. FEKETE, Über die Wertverteilung bei ganzzahligen Polynomen, Math. Z. 31 (1930), 521–526.
- L. B. O. FERGUSON, Uniform approximation by polynomials with integral coefficients, Pacific J. Math. 27 (1968), 53-69; 26 (1968), 273-281.
- 9. L. B. O. FERGUSON, Uniform approximation of rational functions by polynomials with integral coefficients, *Duke Math. J.* 36 (1969), 673–675.
- 10. L. B. O. FERGUSON, Algebraic kernels of planar sets, Duke Math. J. 37 (1970), 225-230.
- 11. L. B. O. FERGUSON, Existence and uniqueness in approximation by integral coefficients, J. Approximation Theory, to appear.
- 12. E. HEWITT AND H. S. ZUCKERMAN, "Approximation by polynomials with integral coefficients, a reformulation of the Stone-Weierstrass theorem, *Duke Math. J.* 26 (1959), 305-324.
- 13. S. KAKEYA, On approximate polynomials, Tôhoku Math. J. 6 (1914-1915), 182-186.
- L. V. KANTOROVIC, Neskol'ko zamečanii o približenii k funkciyam posredstrom polinomov c celymi koefficientami, *Izv. Akad. Nauk SSSR (Otdel. mat. i est. Nauk)* (1931), 1163–1168.

ANDRIA

- Y. OKADA, On approximate polynomials with integral coefficients only, *Tôhoku Math. J.* 23 (1923), 26-35.
- 16. J. PAL, Zwei kleine Bemerkungen, Tôhoku Math. J. 6 (1914-1915), 42-43.
- 17. I. YAMAMOTO, A remark on approximate polynomials, and Eine Bemerkung über algebraische Gleichungen, *Tôhoku Math. J.* 33 (1931), 21–25.