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INTRODUCTION

Let C(a, b) be the set of all real continuous functions on [a, b] where
b - a < 4 (see [6; 12, note 4.4]), letfE qa, b) be arbitrary but fixed, and
let Ilf - Q II denote a measure of deviation or error in approximating f by
Q E Q(Z), the set of all polynomials with integral coefficients.

DEFINITION 1. (a) f is approximable if and only if for each y > 0 there
exists Q" E Q(Z) such that If(x) - Q.,,(x)I < y for all x E [a, b].

(b) lis matchable on S if and only ifS C [a, b], and there exists Q E Q(Z)
such that Q(x) = f(x) for all XES.

(c) Let U(a, b) = {Q I Q E Q(Z), 0 :(; Q(x) < 1for all x E [a, b], Q ~ O}.
Then U(a, b) =1= 0 (follows from [6, Theorem XIV]). Let l(a, b) =
{x I x E [a, b], Q(x) = 0 for all Q E U(a, b)}. The points of l(a, b) are called
the critical points of [a, b].

The problem of the approximability of I has a fairly long history (see
[3; 4; 6; 8; 12; 13; 15-17]); for numerous results closely related to this problem
see [5; 7; 9; 10; 14]. More recently, the questions of existence and uniqueness
of best approximations have been studied (see [1; 2; 11 D. Extensive use of
some of these results will be made in this paper.

Our main result (Theorem 1) states that iflis not approximable, it can be
modified by changing its definition on the finite set l(a, b), so as to be point
wise approximable by polynomials Q E Q(Z).

We prove also some results concerning approximation by polynomials of
Q(Z) in nonChebyshev norms.
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CONVERGENCE THEOREMS AND BEST ApPROXIMATIONS

The first norm to be considered is the maximum (Chebyshev) norm

Ilf - Q Ii", = max /f(x) - Q(x)l·
a~x~b

THEOREM 1. Suppose f is not approximable, and set

ko = Qig[z) Ilf - Q II;

then there exists a sequence {QI} in Q(Z) such that QI --)0- F in [a, b], where

F(x) = \f(x)
IT(x)

for X E [a, b] - lea, b),
for X E lea, b) (which is =F ep and finite [12]).

Here T E Q(Z) and is ofdegree < n, and we have maxJ(a.b) If(x) - T(x) I = ko•

Proof There exists Y > 0 such that for each Q E Q(Z), If(x) - Q(x)I > Y
for some x E lea, b) =F 0 [2, Theorem 7]. From Theorem 5 of [2] it follows
that the supremum of the set of these y's is ko .

Now let {Yj} be a real sequence such that ko < Yj --)0- k o ' Construct
corresponding sequences {Qj} and {Xj} such that Xj E lea, b), and
'Yj > If(xj) - Q;{Xj)! ;;:, I f(x) - Q;{x)/ for all x E lea, b). Since lea, b) is
finite, there exists a subsequence {j'} of{j} such that {x}'} is a constant sequence
(denote it by {x*}). Then Yj' > If(xj') - Qj'(Xj')I == If(x*) - Qj'(x*)1 ;;:, ko,
and If(x*) - Q;'(x*)[- ko . But this implies that there exists a subsequence
U"} of{j'} such that Q;'(x*) - f(x*) ± ko , where ± denotes an appropriate
sign + or - (if both are possible, choose one arbitrarily).

Denote now by Xl , X2 ,... , Xn (Xl < X2 < ... < x n) the points of lea, b).
Since 0 ,,;:; If(x) - Qj'(x)! ,,;:; If(x*) - Qj,(x*)1 < Yj' for each x E lea, b),
and Yj' --)0- k o , the sequence U"} has a subsequence U/} such that
{I f(xl) - Qj,(xl)J} converges to some Pl ,0 ,,;:; Pl ,,;:; ko ' Hence, there exists

1

a subsequence U:} ofU/} such that Qj;(Xl) --)0- f(xJ ± Pl . Using the sequence
U:}, the argument of this paragraph with Xl replaced by X2 defines a sequence
U:} such that Qj'(Xi) --)0- f(Xi) ± Pi for i = 1, 2. Similarly for i = 3, 4,... , n;

2

finally we obtain U~} such that Qj'(Xi) --)0- f (Xt) ± Pi for i = I, 2,... , n, where
o ,,;:; Pi ,,;:; ko • Observe that for so~e i, Pi = ko .

For simplicity, let {j} denote the sequence {j~}. Let T(x) denote the Lagrange
interpolation polynomial of degree < n satisfying T(Xi) = f(Xi) ± Pi'
i = 1,2,..., n. Then Qj(Xi) - T(Xi) for each Xi E lea, b); and [2, Theorem 5]
for each j and each Y > 0 there exists Qjy E Q(Z) such that

II T(x) - Qjy(x)ll", ,,;:; max I T(x) - Qj(x)I + y.
J(a,b)
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Therefore, as y ~ 0, II T(x) - Qiy(x)lloo~ O. Hence, T(x) is approximable on
[a, b], and, therefore, its coefficients are integral [2, remark following
Theorem 3]. Observe that maxJ(a.b) Ij(x) - T(x) I = ko •

We establish now the existence of the sequence {Ql} of the theorem. Let m
be a positive integer satisfying 21m < max2",i",n (Xi - Xi-I)' Then, for each
integer k ;? m, define a new function/k(x) as follows: (1)lk(Xi) = j(Xi) ±Pi
for each Xi ; (2)lk(X) = j(x) for X EE a U E U Eb where Ea = [a, Xl - (11k)],
Eb = [xn + (11k), b], and E = U:=2 [Xi-l + (11k), Xi - (Ilk)]; and (3) Ik(X)
is linear on each of the 2n open intervals of [a, b] - Ea - Eb - E - lea, b),
so thatlkE qa, b). Thenlkconverges to F at each X E [a, b]. Also, for each k,
Ik is approximable on [a, b] (as the coefficients of T are integral), so that for
every y > 0 there exists Qk.y E Q(Z) such that I/k(X) - Qk..,,(X)I < Y
throughout [a, b]. For every X E [a, b], and, for k = 1,2,... , we have
Qk.l/k(X) - F(x) = [Qk.l/k(X) - Ik(X)] + [lk(X) - F(x)]~ 0 as k~ 00. Hence,
limhoo Qk.1Ik(X) = F(x) for every X E [a, b]. (We have assumed n ;? 2 and
a < Xl < X n < b, but similar constructions can be made in the other cases).

DEFINITION 2. If I is approximable, let F(x) - j(x). If I is not approx
imable, let F be as in Theorem 1. For each/E qa, b), we call F an apparent
best approximation to f

Note that, in general, F is not the restriction to [a, b] of a Q E Q(Z), and,
in fact, FE qa, b) only ifI is approximable. In addition, there may be more
than one apparent best approximation to f if I is not approximable. For
example, I(x) = t on [-!,!] has hex) = t for X i= 0, h(O) = 1, and
12(X) = t for X i= 0,/2(0) = 0 as apparent best approximations.

The significance of Theorem 1 is that, regardless of the questions of the
existence of best approximations tof and the approximability ofj, a conver
gence property holds in the following sense.

COROLLARY 1. There always exists in Q(Z) a sequence {Qn} converging toI
in [a, b] - lea, b).

With the previous theorem, the proofs of convergence theorems for other
norms are greatly simplified.

DEFINITION 3. For P ;? 1 and g E qa, b), we set

[I
b ]1/1'II g lip = Ig(x)I1' dx .

a

THEOREM 2. There exists in Q(Z) a sequence {Qn} such that QnCx) ~ j(x)
in the sense that IIf - Qn 111>~ 0 as n~ oo,for every P, 1 ~ P < 00.

Proof (i) If f is approximable, then for n = 1,2,... , there exists
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Qn E Q(Z) such that I f(x) - Qn(X) [ < lin for all x E [a, b]. Thus,
III - Qn lip :(; 41n for 1 :(; p < 00.

(ii) IfI is not approximable, then by the proof of Theorem I, for every
p ;? 1, I Qk.1Ik(X) - F(x) Il' --+ 0 and, hence, II F - Qk.lIk lip --+ O. Since F = I
almost everywhere in [a, b], we have III - Qk.1/k lip --+ O.

Theorem 2 tells us that there exist in Q(Z) arbitrarily good approximations
to I with respect to the L p norms. Furthermore, the existence of a best
approximation Q to/relative to such a norm would imply that III - Q lip = 0,
and since I, Q E C(a, b), this would imply I = Q on [a, b].

COROLLARY 2. There exists in Q(Z) a best approximation toI relative to an
L p norm if and only illE Q(Z).

We study now the implications of Theorem 1 for a "discrete" norm.

DEFINITION 3. Let p ;? 1, and let W = {Wo , WI"'" WI} be a fixed set of
distinct points in [a, b]. We set, for Q E Q(Z),

I 1/1'

Dp(f, Q) = (2: /1(Wi) - Q(Wi)lp) ,
,~O

and Cw = J(a, b) n W.

By Theorem 1, every point Wi of W for which If(Wi) - Q(Wi)I cannot be
made arbitrarily small by a judicious choice of Q must be in Cw •

THEOREM 3. II either (a) Cw = 0, or (b) Cw =F 0 andl is matchable on
Cw , then there exist in Q(Z) arbitrarily good approximations to I with respect
to D p •

Proof (a) Suppose Cw = 0. Then for each i, Wi E [a, b] - J(a, b). By
Corollary I, there exists in Q(Z) a sequence {Qn} such that, for every i,
Qn(Wi) --+ f(wi). Therefore,

(

I 1/1'

DvCf, Qn) = ~ I/(Wi) - Qn(Wi)/p) --+ O.
,=0

(b) If Cw =F 0, and/is matchable on Cw , then there exists (l E Q(Z)
such that (l(x) = f(x) for all x E Cw . Let m be as in the proof of Theorem 1;
we again set J(a, b) = {Xl' x 2 , ••• , xn} where Xl < X2 < ... < xn , and again
assume n ;? 2, a < Xl < X n < b. Similar arguments hold in the other cases.
For each integer k ;? m, let!k(x) be

(l(x) for x E J(a, b),

f(x) for x E [Xi-l + (Ilk), Xi - (Ilk)], i = 2, 3,... , n,

f(x) for x E [a, Xl - (Ilk)] U [xn + (Ilk), b],

linear on each of the remaining open subintervals of [a, b].
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Thus, eachfk is continuous in [a, b), and, since it is matchable on J(a, b), it
is approximable on [a, b] [12, Theorems 2.6 and 4.3]. For every k ~ m, j ~ 1,
let Qi.k E Q(Z) satisfy maxa",;;x"';;b Ifk(X) - Qi,k(X)[ < lfj. Since

IQ(x) for x E J(a, b),
fk(X) --+ f(x) for x E [a, b] - J(a, b),

we have

IQ(X) for x E J(a, b),
Qk,k(x) --+ f(x) for x E [a, b] - J(a, b).

In particular, it follows that Qk,k(w;) --+ few;) for each i. Hence,

I lip

D.p(f, Qk,k) = (L If(w;) - Qk,k(W;W) --+ 0,
,~o
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